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Generalizing ideas of von Waldenfels we develop a systematic procedure to 
define truncated n-point operators which are reminiscent of Ursell functions of 
statistical mechanics. The truncation procedure is adapted to factorization 
relations obeyed by the operators in question. The results are applied to 
spectral-line broadening in plasmas. We derive cluster expansions for the 
line-shape function in terms of these truncated operators, where the ions are 
treated quasistatistically. The first order approximation for the line-shape func- 
tion is discussed. The results are carried over to several moving perturber 
species, in particular to nonqnasistatic ions. 
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1. I N T R O D U C T I O N  

W e  cont inue  our  inves t igat ion of the line shape emi t ted  by  an  a t o m  in a gas 
(p lasma)  of cha rged  classical  part icles .  In  Par t  I (l) we discussed the 
two-level  mode l  and  the associa ted  Schr6dinger  equa t ion  with a r a n d o m  
poten t ia l  ar is ing f rom the gas par t ic les  (perturbers) .  Shielding was taken  
into  accoun t  by  a cutoff  a t  the D e b y e  sphere,  i.e., pe r tu rbers  con t r ibu te  to 
the po ten t ia l  only  as long as they are  in this sphere.  Owing to their  much  
greater  mass  as c o m p a r e d  to electrons,  ions were t rea ted  quasis ta t is t ical ly;  
bu t  it was also po in t ed  out  how to inc lude  ion mot ion.  

Von  Waldenfe l s  (2) has  cons idered  a pa r t i cu la r  case of the model :  a 
s ingle-par t ic le  species (electrons)  only,  a lower veloci ty  cutoff  in the Max-  
well d is t r ibut ion,  and  no stat ic ions. In  Sections II.2 and  II.3 of Ref. 2 he 
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introduces, somewhat ad hoc, truncation for four special types of n-point 
operators, inserts these expressions into (T(t,O)) and (d2/dt2)(T(t,O)), 
and is then able to perform the N-particle limit. From this there result two 
cluster expansions in terms of truncated quantities, one for (T(t,0)) and 
one for (d2/dt2)(T(t, 0)). 

It is in no way obvious how to include several particle species and, in 
particular, static ions. When we tried to include these we had to reconsider 
the truncated operators of von Waldenfets and found little explicit motiva- 
tion for their introduction or for their particular form which was different 
for each of the four types of operators. 

Our problem thus was twofold. On the one hand we had to delve 
deeper into the truncation notion, clarify the underlying ideas, remove the 
ad hoc nature by a systematic truncation procedure, and, in particular, find 
support for the belief that an expansion in quantities thus constructed 
possesses faster convergence properties. All this is done in Section 2. The 
systematic truncation procedure presented there gives von Waldenfels' 
truncated expressions when applied to his four types of operators (cf. the 
examples after Theorem 2.1), and it is clear that he was implicitly guided by 
the same motivation. Once one has found the general procedure, the 
abstract algebraic considerations of von Waldenfels in Section II.2 of Ref. 
2 on the free algebra generated by intervals become very useful. 

On the other hand, we had the intricate problem to find suitable 
n-point operators in terms of which the more general intensity operator 
could be expressed and to which the truncation procedure could be applied. 
With hindsight the form of these operators [Eq. (2.2); cf. also Ref. 3] 
appears quite natural when compared with the corresponding expressions 
of Ref. 2. 

The truncated "n-point operators" of Section 2 depend on n time 
points. They are analogous to Ursell functions of statistical mechanics 
insofar as correlations have been partially removed. The procedure, how- 
ever, is not as simple as for Ursell functions or for the truncated n-point 
functions of quantum field theory, because its form varies and has to be 
adapted to factorization properties of the operators in questions. Further- 
more, time ordering has to be preserved in the operator expressions, giving 
rise to a noncommutative aspect. 

In Section 3 the resulting expressions are fed into the intensity operator 
Ji(to) of Theorem 3.1 of Part I [cf. Eqs. (1.15) and (1.16) below] and the 
N-perturber limit N o  ~ is performed. Basically this is similar to von 
Waldenfels, (2) although we work directly with the intensity operator Ji 
instead of (T(t,O)) since this seems to make the whole treatment more 
transparent, avoiding convolution algebras, *-inverses of 8 functions, etc., 
as in Ref. 2. 
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We obtain in this way a cluster expansion of the intensity operator in 
terms of the truncated quantities of Section 2, leading in a natural way to 
an approximation scheme, or rather two schemes which arise from the two 
alternative expressions for Ji in Eqs. (1.15) and (1.16) below. It is pointed 
out that the two approximation schemes are equivalent in each order (for a 
proof see Ref. 3), a fact underlining the internal consistency of the whole 
approach. Without ions these approximations reduce to those of von 
Waldenfels (2) arising from his cluster expansions of (T( t ,  0)) and ( d 2 / d t  2) 
( T ( t ,  0)), their equivalence in each order not being noticed there. 

In this connection we mention an interesting open problem. The 
convergence of the expansion is proved by means of additional technical 
assumptions which are somewhat ad  hoe. It would be worthwhile to avoid 
them or replace them by physically motivated assumptions. 

In Section 4 the first-order approximation is analyzed and brought into 
a simplified form. In Ref. 5 we have given a direct derivation of this 
first-order term without using cluster expansions. The derivation in Ref. 5 
clarifies the implicit physical approximations involved and it shows that the 
first-order term already partially contains the overlapping of the perturbers. 
Also in Ref. 5 a numerical evaluation for Lyman-c~ is given, showing good 
agreement with experimental data except in the line center. The latter is 
presumably due to the quasistatic treatment of the ions. 

At the end of Section 3 the cluster expansion is carried over to several 
moving perturber species, in particular for nonquasistatic ions. The corre- 
sponding first-order term is explicitly written out at the end of Section 4. At 
the moment, however, it remains unclear how good this first-order term is 
numerically in the case of several moving perturber species. 

Notat ion 

As in I we consider the perturber as an ideal gas and describe an 
individual perturber by its velocity v~, collision time % and impact parame- 
ter O~, where ~-~ and O~ are time and position of closest approach to the 
atom sitting at the origin. The total random potential is then of the form 

v ( t ) =  v i +  re (0  = + (1.1) 
K 

where V/= Vions, Ve = Veleetrons. ~ runs from -- m to oe. If ~ > 0, the index 
K refers to the ~th perturber colliding after t = 0; if ~ ~< 0, it refers to the 
[~l + 1st perturber colliding before t = 0. The intercollision times 

u~ := ~'~+l - ~'~ (1.2) 

are independent and distributed exponentially according to 

ce - c. du (1.3) 
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where c is the mean collision frequency, 

c = (u~) L '  = p g ~  (1.4) 

(~ = mean velocity, u = density). 
The averaging (expectation) is decomposed into two steps, first over 

electrons with a fixed ion configuration, then over ions. The electron 
expectation is written as ( ) ,  

( ) ~ ( )electrons (1 .5 )  

One has to solve the stochastic Schr6dinger equation 

J~( t, t') = - iV(  t)T( t, t') (1.6) 

and to determine the Fourier transform of (T(t,0))~v. The line-shape 
function then results from a trace operation. As in Part I we introduce the 
intensity operator Ji for fixed ion configuration, 

J i ( " )  := ( 2 ~ ) - ' f d t e " ~ t ( T ( t , O ) )  (1.7) 

We will have to consider different time-development operators simulta- 
neously. For the solution of an equation of the form 

d U(t, t') = - ir U(t, t') 
dt 

U(t', t') = ~ (1.8) 

we write therefore 

or, for short, 

so that 

u(t ,  c) = u( t ,  r ;  (1.9) 

T(t, t') = U(t, t'; V)  

One of the main results of I, Theorem 3.1, can then be formulated as 
follows. 

Theorem.  Let the time-shifted N-electron potential in the ion inter- 
action picture be defined by 3 

N 
q,(1 - ' '  N;t) := exp(iVit ) ~ ~p(t - % + T,)exp( -  iVit ) (1.11) 

1,=1 

With this potent ial  let the r andom operators  ~ ( 1 . . . N ; ~ )  and 

3 The time shift is such as to have the first collision at t = 0. The dependence of ~, on O~ and v~ 
is understood. 

u(t ,  r) = u(t ,  c; (1.1o) 
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3--(1 . . .  N;  ~o) be def ined by  

:= fa, g)'~(1 . . .  U;t)U(t,  - o o ; ~ ( 1  . . .  U ) )  (1.12) ~ ( 1  N;~o) 4 I B 

g- (1  . . .  N; ~o) :=  f d t e  i~ v,), { U(t, - ~ ;  r . . .  N ) )  - g(t)l] 

-[1- g ( t -  u, . . . . .  ulv)] 

• U ( ~ , -  o o ; q , ( 1 . . . N ) ) )  (1.13) 

where the real funct ion g satisfies 

L~lg( t ) ld t<  oo, f~  g(t)ldt < oo (1.14) 

Then,  if <T(t,O)) E L l, one has uni formly  in ~0 

Ji(~0) = lim ( 2 ~ r N ) - ~ c ( f f - ( 1  . . .  N;  r . . .  N; ~o)*) (1.15) 
N--> o~ 

and  

vi) 
= lim ( 2 ~ r N ) - 1 c { 2 ( 1  . . .  N ; w ) 2 ( 1  . . .  N;~o)*) (1.16) 

N---> oo 

If <T(t,O)) ~ L 1 the convergence is in the sense of weak convergence of 
measures.  

2. NONCOMMUTATIVE  CLUSTER DECOMPOSIT IONS 

Factorization Relations 

We say that  a set of consecut ive perturbers ,  1 to N, say, separates  into 
two nonover lapp ing  clusters, 1 to m and  rn + 1 to N, if per turbers  1 to rn 
have  a l ready left the Debye  sphere before  any  of the per turbers  m + 1 to N 
have  entered. In  such a si tuation the associated t ime deve lopment  opera tor  
and  the S-mat r ix  factorize. For  example,  for t in the " suppor t "  of the 
second cluster, one has 

V ( t , - o o ; ~ b ( 1 . . . N ) ) =  U ( t , - ~ ; f f ' ) U ( ~ , - ~ ; , ( 1 . . . N ) )  (2.1) 

where ~ '  denotes  the contr ibut ion to q~(l . . .  N )  due to per turbers  m + 1 to 
N. Other  operators ,  such as 3--(1 . . .  N;o~) or .~ (1  . . .  N;~0), also have  
factor izat ion relations, bu t  of different form. The  cluster expansions devel- 
oped here will be  tailored to ma tch  these relations. 
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Instead of (1 . . . . .  N) we consider general intervals in ~. 

I : = ( l , l + 1  . . . . .  r), I, r E N  

and define 

~(I;  t) := exp(iV/t) k ep(t(% - r t ) )exp(-  iV.t) 
v = l  

u ( I ) : = u t +  . . .  + u ,  

f ( I ;  o~) := exp{ i(~o - Vi)u( I ) }  U(oo, - oo; ~b(I)) (2.2) 

3--(1; lo) := f d t  e i(`~- v,), { U(t, - oo ;<)(I )) - g(t)  

- [ 1  - g(t  - u ( I ) )  ] U(oo, -co;  g>(/)) } 

2 ( 1 ;  oa) := f dt e i(o,- v,)tga(/; t) U(t, - oo ; gJ(I )) 

where g(t) satisfies Eq. (1.14). We suppress the variable ~ in the following. 
For V~ = 0 these expressions correspond to quantities introduced in Ref. 2 
in t space with g( t )=  O(- t ) .  Our particular choice of generalization 
ensures the validity of factorization relations for nonoverlapping clusters to 
be stated in Eqs. (2.3). We remark that already Theorem 3.1 of Part I has 
been tailored with this in mind. This is a central point of the paper, 
allowing the application of the truncation procedure. 

Note that all quantities depend only on perturbers indexed by I and 
that they are independent for disjoint intervals. J is essentially an S matrix, 
Y is the Fourier transform of a time-development operator with compen- 
sating terms to insure integrability, and 2 is related to the derivative of a 
time-development operator. 

If the perturbers indexed by I = ( l , . . . ,  r) separate into two nonover- 
lapping clusters indexed by 11 = (1, . . . ,  n) and 12 = (n + 1 . . . . .  r) then 
explicit calculation (3) gives the factorization relations 

J ( s )  = 

J ( s )  = + 3-(1,) 

2 ( 1 )  = 2(12)a~(11) + 2(11) 

Factorization relations of the operators 

Q3-(I) := 3--(1)3-(1)* 

Q ~ ( I )  := 2 ( 1 ) 2 ( 1 ) *  

(2.3a) 

(2.3b) 

(2.3c) 

(2.4) 

(2.5) 
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will be derived from Eqs. (2.3a) and (2.3c) in the examples following 
Theorem 2.1. 

We denote by o the union of adjoining intervals, 
K 

11 o . . . .  I~ = U Ii,  I1 < " ' "  < I~ (2.6) 
1 

and the intervals are nonempty unless explicitly stated otherwise. The 
ordering 11 < 12 simply means that 11 is to the left of 12. By the length [I] of 
an interval 1 c N we denote the number of points in I. 

Truncat ion Heurist ics 

The operators J ( 1  . . .  n) and their expectations are reminiscent of 
n-point functions in statistical mechanics and quantum field theory where 
the usefulness of Ursell functions and truncated n-point functions is well 
known. It suggests itself to carry this notion over to the operator function 
J ( 1  . . .  n). The general idea in the case of Ursell functions is to subtract 
out as many correlations as possible; in particular all Ursell functions 
vanish in the case of independent variables. Because of the operator nature 
of J ( 1  . . .  n) and the ensuing need to preserve the time order the defini- 
tion has to be modified, however. It suggests itself to define the truncated 
operator function J [I] inductively by 

J ( l )  := Z J [ I ~ ] . . .  J [ I , ]  (2.7) 
I 1 . . . . .  1 ~ = 1  

a generalization of Eq. (2.3a) into a sum over all partitions of I into 
adjoining clusters. 

Examples. One has 

J [  il ] = J( /1)  

J [  ili2 ] = J ( i , i 2 )  - j ~ ( i 2 ) t ( i l )  

J [  i,i2i3] = J ( i i i z i3 )  - J ( i 2 i 3 ) J ( i i )  - J ( i 3 ) J ( i l i 2 )  + J ( i 3 ) J ( i a ) J ( i l )  

For Ursell functions one would also have a term of the form (13)(2); but 
because of the time ordering such a term does not appear here. 

An important consequence of our definition and of the factorization 
relation, Eq. (2.3a), is that if the perturbers indexed by I decompose into 
two nonoverlapping clusters then 

J [ I ]  = 0 (2.8) 

Indeed, let the clusters be indexed by 11 , 12 and assume the statement for all 
intervals of length less than that of I as induction hypothesis. Then in Eq. 
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(2.7) only partitions contribute which are also partitions of I] and 12, hence 

J ( 1 ) =  J [ / ]  + • J [ ! / ' ] . . .  J [ I / ' ]  
1"o ...1['=12 

X • J [  I,~ ] . . .  J [  I { ]  (2.9) 
si . . . .  I,;, = I, 

The last term is J(/2)S(I]) which is just J ( I )  for nonoverlapping 
clusters, by Eq. (2.3a). Hence J [I] = 0 follows. 

This property suggests that not only should ( J  [1 . . . . .  N] )  be small 
compared to the untruncated quantity but that it should go to 0 for N---> oe 
since for large N the probability for two nonoverlapping clusters increases. 
In view of Theorem 3. I of Part I it is this large N limit we are after, and we 
therefore try to define 9-- [I] and _C [I] in a similar way. 

To this end we generalize Eqs. (2.3b) and (2.3c) to a sum over all 
ordered partitions by 

Y ( I ) =  : E J-[I,c]J[Ix_,]...J[I,] (2.10) 
l 1 . . . . .  /K o / K + I = I  

with x >~ 1, I l < . ' '  < I= and with Ix+ l either empty or I x < I=+l; for 
tr = 1 the J factors are absent. The definition of 9 [I] is analogous. If I 
indexes two nonoverlapping clusters then again 

3- [1 ]  = 2 [ I ]  = 0 (2.11) 

This is proved by Eqs. (2.3b) and (2.3c) similarly as before. 
Now one might try to insert the expansion Eq. (2.10) into the quadratic 

expressions 

Qy(1 . . .  N )  :-- 3--(1 . . .  U)ff-(1 . . .  N)*  

Q ~ ( 1 . . . N ) : = 2 ( 1 . . . N ) 2 ( 1 . . . N ) *  

which are related to the intensity operator J~ through Eqs. (1.12) and (1.13). 
The resulting sum, however, contains a large number of products of 
statistically dependent factors and one would have to rearrange the sum to 
be able to perform the limit N ~ m. It is not quite obvious how to do this 
directly, and we will therefore obtain this rearrangement by introducing a 
truncated quantity Q [I] with the same property as before, i.e., Q [I] = 0 for 
nonoverlapping clusters. The form of Q [I] is not so easy to guess, and it is 
therefore advisable to systematize the procedure for defining truncated 
quantities. 

General Truncation Procedure 

To arrive at this we express J [I] and 3 - [ I ]  in terms of untruncated 
quantities. In Eq. (2.7) we keep I x fixed and perform the remaining sum. 
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This yields 

J ( I ) = J [ I ] +  E J E I 2 ] J [ / l ]  (2.12) 
11 o 12=1 

Using this it is straightforward to show by induction on the length of I 
that 

J [  I ]  = 

With the notation 

'~, (il)~-'J(I~) . . .J(I ,)  (2 .13)  
1 t . . . . .  ~ = I  

J ( I , I 2 . . .  Ix) := J ( I = ) . . .  J ( I , )  

this reads 

(2.14) 

J [ I ] =  ~ ( -  1 ) " - ' J ( I ,  . . . 1,,) (2.15) 
I1o o I ~ = l  

In a similar way one has from Eq. (2.10) 

3-(1) = 3-[1] + X J- [ I J ]J ( /~ )  (2.16) 
1~ o 1~ o sj = 1 

I j * l  

where Ij may be empty. By induction one shows 

3- [ I ]  = X ( - 1 ) " - '  2 J - ( I . ) S ( I ,  . . .  I . _ i )  (2.17) 
l j o  o / ~ = 1  v = l  

where for v = 1 the J factor is to be omitted. We now introduce the 
quantity Y ( I  1 . . .  I~) defined inductively by 

~ - ( I ,  . . .  Ix) := 3 - ( I . ) S ( I ,  . . .  Ix_ i )  + 3 - ( I i  . . .  I~_ , )  (2 .18)  

for x /> 2. Then it is straightforward to see that 

J - [ I ]  = ~ ( -  1 )=- '~ - ( I ,  . . .  Ix) (2.19) 
11o o I ~ = I  

In Ref. 2, Eqs. (2.15) and (2.19) were introduced with little explicit 
motivation directly as definitions in the case V~ = 0. Here we have defined 
our quantities J ,  Y ,  and 2 so as to retain the same formal relationships. 

Compare now the definitions of J ( I 1  . .  �9 I~) and J - ( I  1 . . .  IK), Eqs. 
(2.14) and (2.19), with the factorization relations o f / ( I )  and Y ( I )  for 
nonoverlapping clusters, Eqs. (2.3). The similarity suggests a general mecha- 
nism to obtain truncated quantities which vanish for nonoverlapping clus- 
ters as in Eqs. (2.8) and (2.11). This is our next result, which is new. 

T h e o r e m  2.1 ( T r u n c a t i o n  T h e o r e m ) .  Let  A ~ ( I ) ,  v = 0 . . . . .  N ,  be 
(operator-valued) functions of the perturbers indexed by the interval I. Let 
Ao(I ) =--1. Suppose that for two nonoverlapping clusters of perturbers, 
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indexed by I] and 12 with I = I l o 12, one has 

A , ( I )  = c ~ A ~ ( I I ) A B ( I 2 )  + d~/~A~(I2)Ar v = O, 1 . . . .  N (2.20) 

with suitable constants e7 r dyr and with the usual sum convention over 
repeated indices. For formal products 11 . . .  I X of intervals define induc- 
tively 

A , (  I l . . .  I,, ) = e2BA,~( I,  . . .  I,,_1)AB ( I,, ) + a~BA,~( I,, )A B ( I , . . .  I,,_,), 

u = 0 , 1 . . . N  (2.21) 

Assume Eq. (2.21) holds also with I X replaced by (the formal product) 
I~I~+ 1 on both sides ("weak associativity"). Now define truncation induc- 
tively by 

A~[I]  = ~ ( -  1)~-'A~(I, . . . / ~ )  (2.22) 
I!  . . . . .  I ~ = I  

Then, if I indexes two nonoverlapping clusters, one has 

A,[ I]  = 0, u = 1 . . . . .  N (2.23) 

The proof will be given in the Appendix. A possible dependence of A. 
on ~0 and other variables has not been written out explicitly. We illustrate 
the theorem by some examples which are relevant for the following. 

Example 1. N = I  and 

A l( I )  = J ( I )  (2.24) 

Equation (2.20) becomes Eq. (2.3a), and Eqs. (2.21) and (2.22) become Eqs. 
(2.14) and (2.15). 

Example  2. N = 2, A] as before and 

A 2 ( I  ) = f f - ( I )  (2.25) 

Equations (2.20) and (2.21) become Eqs. (2.3b) and (2.18). Weak associativ- 
ity is easily checked. 

Example  3. N = 2, A] as before and 

A 2 ( I  ) = ~ - ( I )  := J ( I ) ~ - ( I ) *  (2.26) 

For two nonoverlapping clusters one has from Eq. (2.3) 

~ - ( I )  -- ~-(I2) + J ( I 2 ) ~ - ( I  0 (2.27) 



Stochastic Aspects in the Theory of Spectral-Line Broadening. II 347 

Thus Eq. (2.21) reads 

~ - ( I  l . . .  I~) = ~- - ( Ix)  + J ( I  x ) ~ - ( I  1 . . .  I x_ 1) (2 .28)  

and weak associativity is easily checked. Hence 5 - [ I ]  defined through Eq. 
(2.22) satisfies J -  [I] = 0 for nonoverlapping clusters. 

E x a m p l e  4.  N = 6, A 1 = f ,  A2 = i f - ,  A3 = i f -* ,  A4 = ~-- ,  A5 = ~-*, 
and 

A6(I ) = Q y ( I ) : =  f f - ( I )J- ( I )*  (2.29) 

For two nonoverlapping clusters one has from Eq. (2.3) 

Qs-(I) = Q~-(It) + Qs~(I2) + ~-(I,)*J-(I2)* + J-(I2)~-(I,) (2.30) 

so that for v = 6 Eq. (2.21) reads 

Qy(II  . . .  Ix) = Qs~(I1 . . . / x - l )  + Qy-(Ix) + ~-(I1 . - .  I=_~)'3-(I=)* 

+ Y(Zx )~-(Ii . - .  Ix-l) (2.31) 

Weak associativity follows from that of Y and J - .  Hence the truncated 
quantity Qj[I] defined through Eq. (2.22), 

Qj~[I] = ~ (-1)~-lQs-(I~ . . .  Z)  (2.32) 
llo o1~=1 

satisfies Q j [ I ]  = 0 for nonoverlapping clusters. 

For Q~ of Eq. (2.5) one has analogous expressions with 3 -  replaced by 
and 2 by 

~ ( I )  = J ( I ) ~ ( I  )* (2.33) 

The decomposition of A,(I) for nonovertapping clusters in Eq. (2.20) 
was assumed to be bilinear. More general situations may be envisaged, for 
instance, expressions cubic or quartic in J - .  It is clear how one should try 
to generalize Theorem 2.2 in such cases. 

Example 4 gives us the truncated quantities for the problem under 
consideration. It remains to express, conversely, Q.y(I) and (22(1) in terms 
of truncated quantities. In the Appendix we prove 

= E / Q j ~ [ / ( I ) ]  _It. E Qj-(I) 
1 (0) o I(0 o 1(2) ( 11 o . . .  o /=1(1)  

]1(~ I >/0 x~>2 

(3--[ I= ] J [  Ix_ , ] . . .  J [  I2] ~-[ 11 ] + h.c.) / 
) 

(2.34) 
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where I0,12 may be empty and where for x = 2 there are no J factors in 
the inner sum. By h.c. we denote hermitian conjugate. An analogous 
equation holds for Qe .  We note that the second sum can be rewritten, by 
Eq. (2.7), to yield 

Qj~( I )  = E { QJ~[ I ( ' ) ]  + E 
1 (~ o 1 O) o 1 (2) I l o 12 o 1 3 = 1 ( I )  

(3- [  13 ] J ( I 2 )  J - [  I t ] + h.c. ) ) (2.35) 

and analogously for Q~(I). For 12 empty, the J term is put equal to 1. An 
expression formally the same as in Eq. (2.34) appears in Lemma 10 of 
Ref. 2. 

3. CLUSTER EXPANSION OF THE INTENSITY OPERATOR. 
THE LIMIT N - >  

We are going to express the intensity operator JIG0) of the Introduction 
in terms of truncated quantities. The limit N o  oe in Eqs. (1.16) and (1.17) 
will be performed and the factor 1/N in those equations will disappear. 
Basically the procedure is the same as that of von Waldenfels. (2) 

Our motivation is the fact that the truncated quantities vanish for 
nonoverlapping clusters. One can therefore expect that in general the 
expectations of truncated quantities go to zero with increasing perturber 
numbers since the probability for two nonoverlapping clusters increases, 
i.e., one expects for n ~ oo 

( 3 - - [ 1 . . .  n ] ) -~O,  ( O j [ 1 . . .  n ] ) - ~ O  (3.1) 

etc. 
We insert now Eq. (2.34) or, rather, Eq. (2.35) for Q j  = J - i f - *  and for 

Q~ = _~5~* into Eqs. (1.15) and (1.16) for the intensity operator jr,.. 
Putting 1 (1) = ( l , . . . ,  r) in Eq. (2.34) and using independence we obtain 
from Eq. (2.15) 

= lim c ~ {(  O~-II... r]) + J~ 
N---~oo 2~rN l < l < r < N  I I o 12o  1 3 = ( l . . . r )  

( ( 3 - [  13 ] J ( I 2 ) ~ - [  I l ] )  + h.c) } 

Let n~ = I1~1 and n = r - l + 1. Then, by stationarity, I s can be replaced by 
(1 . . . . .  n,) and (l . . . . .  r) by (1 . . . . .  n). For fixed N and n there are 
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N - n + 1 intervals of the form (l . . . . .  r). Hence 

N 

J i =  lim c ~= N " n + l 

• ( < Q y [ l  . . . . .  n]> + ~] 
n l + n 2 + $ 1 3 = n  

$11,n2 ~ 1 

(<J-[ l . . .  n3]><J(l. . ,  n2)> 

• <Y-[I .. .  =,]> + h.c)} 

(3.2) 

Under an additional technical assumption the limit can now be performed 
explicitly. We assume essentially that the vanishing of the truncated expec- 
tations in Eq. (3.1) for n ~ ~ is sufficiently fast. 

Theorem 3.1. Let ~ n ( J [ 1  . . . . .  n](~0)} be absolutely convergent to 
an operator with norm less than 1. (a) Let 

E <J-j1 .. .  n](~)> 
n 

(ff-[  1 . . .  n] (~o)> (3.3) 
$l 

E ( Qg-[ 1 - . -  n](~o)} 
$1 

be absolutely convergent. Then one has, with absolute convergence, 
o o  

c J,=T~E<OJ[l...n]> 
I 

+~c 1 <J-[1...=]> 1- , <J[1...n]> 

x ~, <Y-[l . . .  hi> + h.c) (3.4) 
(b) Let 

E<~[ l . . .n ] ( ,~)>  
n 

~2 (_~[ 1 . . .  n](to)> (3.5) 
$1 

E< Q~[1... n](~)> 
n 
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be absolutely convergent. Then one has, with absolute convergence, 

c  <Q I1 ,1> (,o- v,)Ji(,0)(,0- v , ) = ~  1 

c { ~ ( . ~ [ 1 . . . n ] )  + ~  

x ~, (~r ,]> + h.c. } (3.6) 

We first note a well-known fact. 

Lemma 3.1. If ~ a  n is absolutely convergent then 

N 

Jim  a.+0 
In view of this it suffices to prove absolute convergence of the 

right-hand side of Eq. (3.2) without the factor ( N  - n + 1 ) / N .  

P r o o f  o f  T h e o r e m  3. la.  We will show below that ~ ( J ( 1  . . .  n)) 
converges absolutely. Now, the points (n I , n2, n3)  in R 3 satisfying n 1 + n 2 -I- 
n 2 = n ,  n i >~ O, lie on the triangle with corners in (n,0,0), (0,n,0) and 
(0, 0, n). Thus the second sum in Eq. (3.2) is over such a triangle, and the 
sum over n results in a sum over the positive quadrant when N goes to 
infinity (except for the points with n 1 = 0 or n 2 = 0). By absolute conver- 
gence the second term therefore becomes, for N---~ 0% 

n = l  n = l  n = l  

The proof will be completed by the following. 

I .emma 3.2. Let ~ ( J [ l  . . .  n](r be absolutely convergent to an 
operator of norm less than 1. Then 

1+ (J(1...n;~0))-- 1- (J[1...n](~0)) (3.9) 
1 1 

where the convergence is absolute. 

Proof.  The Neumann series for the right-hand side gives 

1+ k 2 (J[1. . .n~]) . . .  (JE1...n]) (3.10) 
ir n l , . . . ,  n~,= I 



Stochastic Aspects in the Theory of Spectral-Line Broadening. II 351 

By absolute convergence we can replace this by a threefold sum, first over 
n 1+ - . .  + n ~ - - n  with n i>  1, then over x = l  . . . . .  n and then over 
n = 1 . . . . .  Introducing ~ intervals such that 11 . . . .  o I~ = (1 . . . . .  n) 
and II~] = n~, Eq. (3.10) can then be written as 

i +  2 
n = l x = l  l , l  . . . . .  l ~=n  

By Eq. (2.7) this is the left-hand side of Eq. (3.9). �9 
The proof of part (b) of Theorem 3.1 is analogous. 

Remark. It is an interesting open problem of how to get rid of the 
technical assumptions of Theorem 3.1, either by actually proving them or 
replacing them by more physical assumptions. In Ref. 2 a special case of 
the formula in Eq. (3.4) was derived under rather restricted assumptions. If 
there are no ions present and if one assumes a lower velocity cutoff which 
is related in a special way to the electron density then the Fourier transform 
of Ji was shown to converge in a certain measure theoretic norm as N + or 

Approximation Scheme 

The expressions for the intensity operator Ji(o~) in Theorem 3.1 lend 
themselves to obvious approximations by terminating the sum over the 
truncated quantities at some given N. Let us denote the resulting expres- 
sions by J i~  ) and J i ~  ). These contain all correlations up to N particles. 

It is reassuring for the soundness of the approximation scheme that 
both approximations coincide in each order although J t ~  ) contains the 
unspecified function g(t) from Eq. (1.13) while J}~) does not. 

Theorem 3.2. For each N one has 

d,~d ) = d i ~  ) (3.11) 

For the proof we refer to the thesis. (3) This result shows in fact that 
Y,~d) is independent of the particular choice of the function g. Without loss 
of generality one may take g(t)  = 0 ( -  l). The freedom in the choice of g(t) 
remained unnoticed in Ref. 2, only 8 ( - t )  was introduced there. This 
freedom, however, might be useful in numerical evaluations. 

Several Perturber Species 

The results of this section can be easily carried over to the situation 
where one has several moving perturber species. This is achieved by a 
simple observation on Poisson processes: the sum of two Poisson processes 
is again a Poisson process. In our situation this means the following. The 
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xth collision can now be by any of the perturber species, and the intercolli- 
sion times 

are distributed according to 

ce - cu du 

where c is the sum of the collision frequencies for the individual perturber 
species, 

c = c 1 + . . .  + c r (3.12) 

A perturber is characterized, in addition to p~, v~, and %, by a parameter a, 
a = l , . . . ,  r, which distinguishes the different perturber species and over 
which one also has to average with weight G / c .  T h e  distribution for p~, v,, 
depends of course on the species in question. For the first-order approxima- 
tion this is spelled out explicitly at the end of the next section. 

4. THE FIRST-ORDER APPROXIMATION FOR THE INTENSITY 
OPERATOR 

Let VI(I), Ul(t), and S 1 be the one-electron potential, time-devel- 
opment operator from - m  to t and S matrix, respectively, in the ion 
interaction picture, 

V z ( t )  := q,(1,t) = eiV't~p(p,v; t ) e  - i v ' '  

u , ( t )  := u ( t , - ~ ;  v , )  (4. l )  

s, := u , ( ~ )  

Since 

= f o n d U e  -cu+i~ '~ -v ' )u=  c ( e  i ( w  V,.)} - l  (4.2) ( e  i~  ~ ' ~  c - - 

w e  have, from Eq. (2.3) and from the independence of u and S t, 

( J i l l )  = ( J ( 1 ) )  = c ( c  - i(o~ - V i ) ) - ' ( S l )  

and 

(1 - ( / [ 1 ] ) ) - ' =  ( - i ( , ~ -  v , )  + c(1 - ~ s , > ) } - ' ( c  - i(,~ - v , ) )  

(4.3) 

We define ff-R (1) by 

J-R (1; ~) :---- f d t e i ~ " e  - ' v ' '  ( U i ( t )  - g ( t )  - (1 - g ( t ) ) S ,  } (4.4) 

where the index R stands for "reduced" (no shift by u 0. Then we can write 
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by Eq. (4.3) 

Y [ 1 ]  = 3 - ( 1 ) = 3 - R ( 1 ) + ~ ( e - i V ' ( g ( . - u ) - g ) ) S ,  (4.5) 

where ~-  denotes Fourier transform. We use partial integration and set 
g' -- ~-g' .  Then 

3-(1,~o) -- 3-R(1,r ) + i{~0 -- V i} - l {e  i('~- v')u - 1}~(~o - V~)S 1 (4.6) 

From ~ -  = J J -  one then has 

~-[  1 ](~o) = ~--(1; ~o) = e `('~ v,)"S,3-R (1; ~o)* 

+i{~o-- V, .}- '{e i ( '~  1}g'~(-~o+ Vi) (4.7) 

Taking expectations and using Eq. (4.2) gives 

( Y [  1](r = ( Y ( 1 ; ~ ) )  

= (3 -R(1 ;w))  -- (--i(o~ -- V,) + c ) - ' g " ~ ( w -  V,-)(S,) (4.8) 

and 

(3[1](~o)) = {-i(~o- G)+  c}- t{c(  S, YR(1;~o) *) _ g"V(,~_ V~)*} 

(4.9) 

From Eq. (4.6) one finds 

( Qj~[ 1 ] (~))  = (3--(1; ~o)g-(1; ~)*) 

= (J-R (1; (1; ,o)*) 

- {c - i ( w -  V~)}-'g'~(~o- Vi)(Sl3-n(1;~o)  *) 

- (g-R(1;  w)S 7 ) ( c  + i(~o - V~.)}-I 7(~o - V/)* 

+ 2 ( c 2 + ( ~ 0  - gi)2}-lg%'~((a) " g / )g '~(~  - g / ) *  (4 .10)  

To obtain the first-order approximation for the line-shape function we 
insert these expressions into Eq. (3.4) and terminate the sum at n = 1. A 
little algebra shows that this yields 

ji(1) ____. c ( j - R ( 1 ) ~ - n ( 1 ) , )  
2~r 

+ ~ ( [ c ( ~ - n ( 1 ) )  -- g'7(~o -- g/) ]  [ -  i(~0- V/) + c(1 - ( S I ) ) ] - '  

• I t (S I f t -R (1 )*  ) - g'(o~ - V,.)* ] + h.c. } (4.11) 

We note that the first term is positive and still depends on the choice 
of g while the whole right-hand side is independent of g. This might be used 
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to look for an "optimal" choice of g but we have found no natural 
candidate. 

If one chooses g( t) = 0(-  t) then 

g ' = - I  

We insert this and Eqs. (4.1) and (4.5) into Ji (0. With Eq. (1.13) we then 
obtain the following: 

Theorem 4.1. Let V~(t), Ul(t ) and S t be the one-electron potential, 
time-development operator from - oc to t and the S matrix, respectively, in 
the ion interaction picture. The intensity operator in first order is then given 
by 

c (fdtei( ,~-v,)t(Ui(t)_O(_t)_O(t)SI) 2) 

+ 1 (1 + cfdte  i'~- va,( Ul(t)-  0 ( - t ) -  O(t)Sl )) 

• { - i ( ~ -  V/) + c(1 - S I ) ) - '  

• {1 +cfd t e i ( '~  * +h.c .  

(4.12) 

where h.c. stands for the Hermitian conjugate of the second summand and 
where IA ]2 is defined as AA*. An equivalent form is 

+ cfdte w,(t)) 

• { - i ( o : -  V/) + c(1 - S , ) } - '  

x { /dteit'~-vi)' ( V,(t)Ui(t)S]* ) } * 

+ h . c . J ( o : -  V/) -I  (4.13) 

The proof of the last statement starts from Theorem 3.1(b) and runs 
along the same lines as that of Eq. (4.12). It can also be derived from the 
latter by a straightforward partial integration (see below). 
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Remark. (i) The line-shape function in first order is obtained from 
Part I, Eq. (1.21), 

L(l)(w) = Tr D (J,( ')(w - w0))ions (4.14) 

where the operator D is given by Part I, Eq. (1.5), and w 0 is the frequency 
of the unperturbed line. 

(ii) In the "impact approximation" of spectral-line broadening (4) the 
electron collisions are taken as infinitesimally short and hence as nonover- 
lapping. Then the first-order expression for the line-shape function becomes 
exact since all truncated quantities now vanish for n ~ 2. The time- 
development operator Uj(t) becomes a step function, 

(~ for t < 0 
U l ( t ) =  S1 for t > 0  

and all integrands in Eq. (4.12) are identically zero. Hence in the impact 
approximation for the electrons 

L(to0 + to) = L ' (to + ,00) 

_ 1 T r D ( { - l ( w -  Vi)+c(1-Si)}-'+h.c.)ion" (4.15) 2~r 
For V~ = 0 this reduces to the usual result. (4) 

(iii) The equivalence of the two forms for Ji (l) can be shown directly 
in a simple way. By partial integrations one has 

fate '(~-r')' ( Vl(t)  -- O ( - - t ) -  O(t)S, ) 

=i(to-Vi)- '{1-Sl+fdtei(~-v~)~vigi)  

If one inserts this into Eq. (4.12) one obtains Eq. (4.13) by straightforward 
algebra. 

(iv) The two forms of L (1) have their merits in different regions of w. 
For large w the first term in Eq. (4.13) becomes dominant since the 
remaining ones fall off with a higher power of to. For small to it turns out in 
applications that all integrals in Eq. (4.12) can be neglected. This leads to 
the impact approximation, Eq. (4.15). 

(v) A direct derivation of L (1) has been given by us in Ref. 5. 
Starting from Eq. (1.16) one can approximate in q(1 . . .  N;t)U(t,-o e; 
,5(1 . . . N)) the second factor while retaining the first factor ~(1 . . . N; t) in 
full. The second factor is approximated by considering the collisions as 
nonoverlapping. Then the N-perturber limit in Eq. (1.16) can be performed 
explicitly, a very instructive exercise. In a similar way one can also start 



356 Hegerfeldt and Reibold 

from Eq. (1.15). (3) This analysis shows that the first-order approximation 
takes perturber overlapping partially into account. 

(vi) An application of our results for L (1) to Lyman-a has been given 
in Ref. 5. The agreement with experiment is good for the line wing. In the 
line center the agreement is not so good. This may be due to the quasistatic 
treatment of the ions. 

Several Perturber Species 

For simplicity we consider two moving particle species, ions and 
electrons, say, and no quasistatic potential. According to Eq. (3.12), 

c = c e + c i (4.16) 

and in Theorem 4.1 the averaging ( ) is now an averaging ( )e over 
velocity and impact parameter of a single electron, with weight c J c ,  as well 
as an averaging ( )i  over  velocity and impact parameter of a single ion, 
with weight c J c .  In obvious notation and with the abbreviations 

Be(~O ) = f dt ei~'( U~( t) - O( t) - O( t)S~ ) (4.17) 

and similarly for B~, Eq. (4.12) now becomes 

2qrJ(1) = ce(BeBe*)e + c e ( B i B ~ )  i 

+ I (1 + ce<Be) e + c i (B i ) i }  { - -  io~ + c - ce (Se)  e - -  c i ( S i ~ i }  - 1  

• {1 + ce (SeB*)e  + c i ( S i B * ) i  ) + h.c.] (4.18) 

In a similar, but more complicated way, one can write down the higher- 
order approximations. For ions these are expected to play a more important 
role. 

APPENDIX: PROOF OF THEOREM 2.1 (TRUNCATION THEOREM) 

Under the assumptions of Theorem 2.1 we first prove the following. 

L e m m a  A1. Let I = I  l . . . . .  I~, let I i = / / o l i  2 for some i <  x, 
and let the perturbers indexed by I decompose  into two nonoverlapping 
clusters according to 11 . . . . .  I /  and Ii 2 . . . . .  I X. Then, for u = 
1 . . . . .  N 

A . ( I ,  . . .  I i  . . . 1 ~ )  = A . ( I t  . . . I i ] I i 2  . . . I x )  (A1) 

Proof .  We proceed by induction on x. For K = 1, Eq. (A.1) reduces 
to Eqs. (2.20) and (2.21). Assume the statement to be true for all K < n - 1. 



Stochastic Aspects in the Theory of Spectral-Line Broadening. II 357 

To prove it for x = n, we distinguish the cases i = n = x and i < n = x in 
Eq. (A.1). For i = n = x we have from Eqs. (2.20) and (2.21) 

A , ( I 1 .  . . I,,)= C ~ A , ~ ( I 1 .  . . I ~ _ , ) A B ( I ~ I ~ )  + d ; B A ~ ( I ~ I ~ ) A / ~ ( I 1 .  . . I ~ _ , )  

By weak associativity the right-hand side equals A ~ ( I  1 . . .  I ~ I ~ ) .  

For the case i < n = x we have, by induction hypothesis, 

A ~ ( I 1 .  . . I ~ )  = C ~ B A , ~ ( I 1 .  . . I i l l i 2  . . . I ~ _ l ) A ~ ( I ~ )  

+ d y B A , ~ ( I ~  ) A B  ( I 1 . - -  I i l l i  2 . . .  I~,_ 1) 

By Eq. (2.21) this equals A ~ ( I  1 . . . l i l l i  2 . . . I~ ) .  �9 

In order to handle the combinatorics it is convenient at this point to 
consider arbitrary formal products of intervals as in Section II.2 of Ref. 2, 
not only subsequent ones. We use Eq. (2.21) and linearity to extend the 
definition of A, to all formal linear combinations of such formal products. 
In this way A, is defined on the free algebra, d {I}, generated by the 
intervals. Eq. (2.22) then reads 

< 1 1  = o = 

This motivates the introduction of a formal truncated quantity [I] for an 
interval I by 

[ I  1 := ~ (-1)"-111 . . . I ~  (A3) 
1~ . . . . .  1~=1 

Then I, as an element of the free algebra, can be expressed as (2) 

I = ~,, [ 1 1 1 ' ' "  [I~] (A4) 
I I . . . . .  I~ ,=l  

This is easily proved by induction on the length of I by means of the next 
lenlma. 

L e m m a  A 2  (2) . 

Furthermore, 

and also 

Let I = ( i  I . . .  iN). If N = 1, then 4 

[i13 =(i1) 

I = I I  ] + ( i O E i 2  . . . i N ]  + . . .  + ( i l  . . . i N _ _ l ) I i N l  

I = [ I ]  + [ i l ' - ' i N - l l ( i u )  + " ' "  + [ i l ] ( i 2  . . . i N )  

(A5) 

(A6) 

(A7) 

4 For intervals we use round brackets. Instead of [(il - �9 �9 iN)] we write [ i !  . . . iN]. 
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ProoL Equation (A.5) is obvious. Equation (A.6) is proved from the 
definition, 

I = I +  ~,, (--1)  ~- '  2 I I . . . I ~  
k > ~ 2  11 . . . .  1 ~ = 1  

N - - 1  

= I -  ~ ,  (i, . . .  it) ~ ( - 1 )  ~-'  ~ I , . . . / ~  
1 = 1 ~ ~ 1 11 . . . . .  IK = ( i t +  I, . �9 �9 , i N )  

N - - 1  

= I -  ~ ,  ( i , . . . i t ) [ i t +  , . . . i~v ] 
/ = 1  

Equation (A.7) is proved similarly. �9 
We also need the following combinatorical fact. 

Lomma A3 (2). For given integer m let the partition operator Pm on 
J [I] be defined by 

pm(il ...iN):----- I (il " ' ' m ) ( m +  1 . . . i n ) ,  if i 1.<< m < i  N 
(A8) 

( (i I iN), otherwise 

pro(I, . . .  I~) :=p, , I ,  . . . p , , I ~  (A9) 

and by linearity. If I and m are such that pm I :/: I, then 

1 ) m [ I ]  = 0 (A10) 

Proof. We use Lemma A.2 and induction on the length of I. For 
intervals with a single point the statement is trivially true. Assume it to hold 
for all intervals of length less than that of I. By Eq. (A.6) we then have 

(i, . . .  m) (m  + 1 . . .  iN)=pm(i ,  . . .  iN) 

=pm[i l  . . . i N ]  + ( i  I . . . m ) [ m +  1 . . . i N ]  

+ (il . . . m) (m  + 1 ) [ m + 2 . . . i N ]  + ' ' '  

+ ( i l  " - . m ) ( m +  1 . . . i N _ l ) [ i N ]  

=pm[ i  I . . . i n ]  + ( i  1 . . . m ) ( m +  1 . . . i N )  

This implies Eq. (A.10). �9 

Proof  o f  Theorem  2.1. If the perturbers indexed by I decompose 
into two nonoverlapping clusters according to (i 1 . . .  m) and ( m . . .  iN) we 
have from Lemma A.1 for 11 . . . . .  I~ = I, 

A , ( I  1 . . .  I~) = A , ( p m ( I , . . .  I~)) 
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Hence, by linearity, 

A ~ [ I I =  ~ ( -  1 ) K - l A ~ ( p m ( I ,  . . .  I~))  
11o  o I ~ = 1  

= A , ( p , , , [ I ] )  

--0 
by Lemma A.3. �9 

We now turn to the proof of Eq. (2.34) where we follow Ref. 2. We 
first prove the little combinatorial identity 

E ( -  1)K-'= 8,1,1 := { 1' if I = (il) (Al l )  
1, . . . . .  I~ = 1 0, otherwise 

We use induction on the length of I. For I = (i 0 the statement is trivial. 
For I = (i I . . .  iN), N /> 2, the left-hand side equals 

1+  E ( - 1 ) ~ =  1 - E  E ( - 1 )  = - 2 = 1 - 1 = 0  
11 . . . . .  I~ ,=1  I K I I . . . . .  I~, i = I \ I ~  

K>~2 

by induction hypothesis. 
To prove Eq. (2.34) we use Eqs. (2.31) and (A.11) to calculate 

Q y ( [ I ] J )  = E Qj~( I ,  . . .  I J )  
I I . . . . .  1 ~ = 1  

= E ( - 1 ) ~ - ' { Q ~ ( I , ' " I ~ ) + Q y ( J )  
I t  o o 1~= 1 

+ ~ - * ( I I . . .  I ~ ) f f -  * ( S )  

+ . . .  t = ) )  

= Q y [ I ]  + 8 ,11 tQj - (J )  + ~ - * [ I ] J - * ( s )  + Y ( J ) ~ - [ I ]  

From Eq. (A.7) we then have, with I = (i 1 . . . iN), 

Q j ~ ( I )  = Q w [ i l  . . .  iN_ ,]  + ' ' '  + Qj~[ i l ]  + Qw( i2  . .  . iu)  

+ {ff-(ijv)ff-[i, . . .  iN_l]  + . . .  

+3 - - ( i ,  . . .  i N ) ~ -  [ i  l] } + ( . . .  }* 

By Eq. (2.10) the curly bracket becomes 

(" "" )--- E Y E / ~ ] J [ / ~ - ~ ] .  �9 �9 J [ I 2 ] ~ - [ l , ]  
I I o o I ~ + 1 = I  

II~+l[ >0; ~>2 

(A12) 

(AI3) 

(A14) 
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where, for x 1> 2, the J factors are omitted. Straightforward induct ion on 
the length of I now yields Eq. (2.34). The proof  for Q~ is identical. 

For  completeness '  sake we ment ion that one derives with the same 
method 

~ - ( I )  = E J [ I 1 ] - . -  J [ I ~ -  ~]~-[ I~] (A15) 
1 o . . . . .  1 K = I  

1101 ~> 0 

where, as indicated, I 0 may  be empty and where, for x = 1, the J factors 
are omitted. 
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